Skip to Content
Hands-On Meta Learning with Python
book

Hands-On Meta Learning with Python

by Sudharsan Ravichandiran
December 2018
Beginner to intermediate
226 pages
7h 59m
English
Packt Publishing
Content preview from Hands-On Meta Learning with Python

Task agnostic meta learning (TAML)

We know that, in meta learning, we train the model over a distribution of related tasks so that it can easily be adapted to a new task with only a few samples. In the previous chapters, we've seen how MAML finds the optimal initial parameters of the model by calculating meta gradients and performing meta optimization. But one of the problems we might face is that our model can be biased over some tasks, especially the tasks that are sampled in the meta training phase. So, our model will overperform on these tasks. If the model does so, then it will also lead us to the problem of finding a better update rule. With the biased model over some tasks, we'll also not able to perform better generalization on the ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On One-shot Learning with Python

Hands-On One-shot Learning with Python

Shruti Jadon, Ankush Garg
Hands-On Transfer Learning with Python

Hands-On Transfer Learning with Python

Dipanjan Sarkar, Raghav Bali, Tamoghna Ghosh
Python Deep Learning Projects

Python Deep Learning Projects

Matthew Lamons, Rahul Kumar, Abhishek Nagaraja
Advanced Deep Learning with Keras

Advanced Deep Learning with Keras

Rowel Atienza, Neeraj Verma, Valerio Maggio

Publisher Resources

ISBN: 9781789534207Supplemental Content