Skip to Content
Hands-On Meta Learning with Python
book

Hands-On Meta Learning with Python

by Sudharsan Ravichandiran
December 2018
Beginner to intermediate
226 pages
7h 59m
English
Packt Publishing
Content preview from Hands-On Meta Learning with Python

Learning the metric space

In the metric-based meta learning setting, we will learn the appropriate metric space. Let's say we want to learn the similarity between two images. In the metric-based setting, we use a simple neural network that extracts the features from two images and finds the similarity by computing the distance between features of these two images. This approach is widely used in a few-shot learning setting where we don't have many data points. In the upcoming chapters, we will learn about metric-based learning algorithms such as Siamese networks, prototypical networks, and relation networks.

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On One-shot Learning with Python

Hands-On One-shot Learning with Python

Shruti Jadon, Ankush Garg
Hands-On Transfer Learning with Python

Hands-On Transfer Learning with Python

Dipanjan Sarkar, Raghav Bali, Tamoghna Ghosh
Python Deep Learning Projects

Python Deep Learning Projects

Matthew Lamons, Rahul Kumar, Abhishek Nagaraja
Advanced Deep Learning with Keras

Advanced Deep Learning with Keras

Rowel Atienza, Neeraj Verma, Valerio Maggio

Publisher Resources

ISBN: 9781789534207Supplemental Content