Improving Product Reliability and Software Quality, 2nd Edition
by Mark A. Levin, Ted T. Kalal, Jonathan Rodin
Series Foreword Second Edition
There is a popular saying, “If you fail to plan, you are planning to fail.” I don't know if there is another discipline in complex product development where this is more true than designing for product reliability. When products are simple, it is possible to achieve high reliability by observing good design practices, but as products become more complex, and include thousands of components and hundreds of thousands of lines of software, a systematic approach is required.
This has played itself out inside of Teradyne over the last decade through two product lines in our Semiconductor Test Division. One product line, the UltraFLEX Test System, was designed internally. Another, the ETS‐800 Test System, was designed in a company that Teradyne acquired in 2008.
The UltraFLEX platform was designed using Teradyne's internal Design for Reliability standards. The principles embodied in those standards are described by the authors. We religiously used an approved parts list of qualified components and suppliers, we analyzed the electrical stress on every circuit, and we calculated predicted reliability for every instrument and the whole system. Once the system was fielded, we tracked MTBF and executed our failure response, analysis, and corrective action system (FRACAS) on repeat failure modes. The result is that the UltraFLEX platform, our most complex product, has a field reliability about three times higher than prior‐generation products. What makes this ...