O'Reilly logo

IPython Interactive Computing and Visualization Cookbook - Second Edition by Cyrille Rossant

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Understanding the internals of NumPy to avoid unnecessary array copying

We can achieve significant performance speed enhancement with NumPy over native Python code, particularly when our computations follow the Single Instruction, Multiple Data (SIMD) paradigm. However, it is also possible to unintentionally write non-optimized code with NumPy.

In the next few recipes, we will see some tricks that can help us write optimized NumPy code. In this recipe, we will see how to avoid unnecessary array copies in order to save memory. In that respect, we will need to dig into the internals of NumPy.

Getting ready

First, we need a way to check whether two arrays share the same underlying data buffer in memory. Let's define a function aid() that returns the ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required