Skip to Content
Learn Python by Building Data Science Applications
book

Learn Python by Building Data Science Applications

by Philipp Kats, David Katz
August 2019
Beginner
482 pages
12h 56m
English
Packt Publishing
Content preview from Learn Python by Building Data Science Applications

Chapter 10

Why should we use a special stack of packages for data analysis?

Data analysis requires a fast and easy way to operate on multiple elements at once—a so-called vectorized approach. Python's scientific stack allows this by using numpypackage for fast array operations.

Why are NumPy computations so fast compared to normal Python?

NumPy is drastically faster than vanilla Python on numerical operations. This is all thanks to a different data representation—NumPy arrays, in contrast to standard Python collections, require all the elements to be of the same data type. Because of that, an array can be passed to a CPU as one entity and computed more effectively.

What is the use case and benefit of using Pandas over NumPy?

NumPy only ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python for Data Science

Python for Data Science

Yuli Vasiliev
Introduction to Machine Learning with Python

Introduction to Machine Learning with Python

Andreas C. Müller, Sarah Guido

Publisher Resources

ISBN: 9781789535365Supplemental Content