Skip to Content
Learn Python by Building Data Science Applications
book

Learn Python by Building Data Science Applications

by Philipp Kats, David Katz
August 2019
Beginner
482 pages
12h 56m
English
Packt Publishing
Content preview from Learn Python by Building Data Science Applications

Notebooks

As we mentioned earlier, Jupyter is designed with a different approach to programming than VS Code. Its central concept is so-called notebooks: files that allow the mixing of actual code, text (including markdown and LaTeX equations), as well as plots, images, videos, and interactive visualizations. In notebooks, you execute code interactively, one cell after another. This way, you can experiment easily—write some code, run it, see the outcomes, and then tweak it again.

The outcomes are shown along with the code so that you can open and read the notebook, even without executing it. Because of that, notebooks are especially useful in scientific/analytical contexts, as on the one hand, they allow us to describe what we're doing with ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python for Data Science

Python for Data Science

Yuli Vasiliev
Introduction to Machine Learning with Python

Introduction to Machine Learning with Python

Andreas C. Müller, Sarah Guido

Publisher Resources

ISBN: 9781789535365Supplemental Content