8. More Classification Methods

In [1]:

# setup
from mlwpy import *
%matplotlib inline

iris = datasets.load_iris()

# standard iris dataset
tts = skms.train_test_split(iris.data, iris.target,
                            test_size=.33, random_state=21)
(iris_train_ftrs, iris_test_ftrs,
 iris_train_tgt,  iris_test_tgt) = tts

# one-class variation
useclass = 1
tts_1c = skms.train_test_split(iris.data, iris.target==useclass,
                               test_size=.33, random_state = 21)
(iris_1c_train_ftrs, iris_1c_test_ftrs,
 iris_1c_train_tgt,  iris_1c_test_tgt) = tts_1c

8.1 Revisiting Classification

So far, we’ve discussed two classifiers: Naive Bayes (NB) and k-Nearest Neighbors (k-NN). I want to add to our classification toolkit—but first, I want to revisit what is happening ...

Get Machine Learning with Python for Everyone now with the O’Reilly learning platform.

O’Reilly members experience live online training, plus books, videos, and digital content from nearly 200 publishers.