Machine learning in practice
So far, we've focused on how machine learning works in theory. To apply the learning process to real-world tasks, we'll use a five-step process. Regardless of the task, any machine learning algorithm can be deployed by following these steps:
- Data collection: The data collection step involves gathering the learning material an algorithm will use to generate actionable knowledge. In most cases, the data will need to be combined into a single source, such as a text file, spreadsheet, or database.
- Data exploration and preparation: The quality of any machine learning project is based largely on the quality of its input data. Thus, it is important to learn more about the data and its nuances during a practice called data exploration. ...
Get Machine Learning with R - Third Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.