Example – predicting medical expenses using linear regression
In order for a health insurance company to make money, it needs to collect more in yearly premiums than it spends on medical care to its beneficiaries. Consequently, insurers invest a great deal of time and money to develop models that accurately forecast medical expenses for the insured population.
Medical expenses are difficult to estimate because the costliest conditions are rare and seemingly random. Still, some conditions are more prevalent for certain segments of the population. For instance, lung cancer is more likely among smokers than non-smokers, and heart disease may be more likely among the obese.
The goal of this analysis is to use patient data to forecast the average medical ...
Get Machine Learning with R - Third Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.