Skip to Content
Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib
book

Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib

by Robert Johansson
December 2018
Intermediate to advanced
709 pages
18h 56m
English
Apress
Content preview from Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib
© Robert Johansson 2019
Robert JohanssonNumerical Python https://doi.org/10.1007/978-1-4842-4246-9_19

19. Code Optimization

Robert Johansson1 
(1)
Urayasu-shi, Chiba, Japan
 

In this book we have explored various topics of scientific and technical computing using Python and its ecosystem of libraries. As touched upon in the very first chapter of this book, the Python environment for scientific computing generally strikes a good balance between a high-level environment that is suitable for exploratory computing and rapid prototyping – which minimizes development efforts – and high-performance numerics, which minimize application runtimes. High-performance numerics is achieved not through the Python language itself, but rather through leveraging libraries ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Mastering Numerical Computing with NumPy

Mastering Numerical Computing with NumPy

Umit Mert Cakmak, Tiago Antao, Mert Cuhadaroglu
Numerical Computing with Python

Numerical Computing with Python

Pratap Dangeti, Allen Yu, Claire Chung, Aldrin Yim

Publisher Resources

ISBN: 9781484242469Purchase LinkPublisher Website