Skip to Main Content
Python Data Science Essentials
book

Python Data Science Essentials

by Alberto Boschetti
April 2015
Beginner content levelBeginner
258 pages
5h 48m
English
Packt Publishing
Content preview from Python Data Science Essentials

Ensemble strategies

Until now, we have seen single learning algorithms of growing complexity. Ensembles represent an effective alternative since they tend to achieve better predictive accuracy by combining or chaining the results from different data samples, algorithms settings, and types.

They divide themselves into two branches. According to the method used, they ensemble predictions:

  • Averaging algorithms: These predict by averaging the results of various parallel estimators. The variations in the estimators provide further division into four families: pasting, bagging, subspaces, and patches.
  • Boosting algorithms: These predict by using a weighted average of sequential aggregated estimators.

Before delving into some examples for both classification ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Data Science Essentials - Second Edition

Python Data Science Essentials - Second Edition

Luca Massaron, Alberto Boschetti
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins

Publisher Resources

ISBN: 9781785280429Supplemental Content