Skip to Main Content
Python Data Science Essentials
book

Python Data Science Essentials

by Alberto Boschetti
April 2015
Beginner content levelBeginner
258 pages
5h 48m
English
Packt Publishing
Content preview from Python Data Science Essentials

An overview of unsupervised learning

In all the methods we've seen so far, every sample or observation has its own target label or value. In some other cases, the dataset is unlabelled and, in order to extract the structure of the data, you need an unsupervised approach. In this section, we're going to introduce two methods to perform clustering, as they are among the most used methods for unsupervised learning.

Note

Keep in mind that often, the terms clustering and unsupervised learning are considered synonymous.

The first method that we'll introduce you to is named K-means. In signal processing, it is the equivalent of a vectorial quantization, that is, the selection of the best codeword (from a given codebook) that better approximates the input ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Data Science Essentials - Second Edition

Python Data Science Essentials - Second Edition

Luca Massaron, Alberto Boschetti
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins

Publisher Resources

ISBN: 9781785280429Supplemental Content