Skip to Main Content
Python Machine Learning By Example
book

Python Machine Learning By Example

by Yuxi (Hayden) Liu, Ivan Idris
May 2017
Beginner to intermediate content levelBeginner to intermediate
254 pages
6h 24m
English
Packt Publishing
Content preview from Python Machine Learning By Example

Training a logistic regression model via stochastic gradient descent

In gradient descent-based logistic regression models, all training samples are used to update the weights for each single iteration. Hence, if the number of training samples is large, the whole training process becomes very time-consuming and computation expensive, as we just witnessed in our last example.

Fortunately, a small tweak will make logistic regression suitable for large-size data. For each weight update, only one training sample is consumed, instead of the complete training set. The model moves a step based on the error calculated by a single training sample. Once all samples are used, one iteration finishes. This advanced version of gradient descent is called ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning by Example - Third Edition

Python Machine Learning by Example - Third Edition

Yuxi (Hayden) Liu
Python: Deeper Insights into Machine Learning

Python: Deeper Insights into Machine Learning

Sebastian Raschka, David Julian, John Hearty
Python: Real World Machine Learning

Python: Real World Machine Learning

Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti

Publisher Resources

ISBN: 9781783553112Supplemental Content