Skip to Content
Python Machine Learning - Third Edition
book

Python Machine Learning - Third Edition

by Sebastian Raschka, Vahid Mirjalili
December 2019
Beginner to intermediate
772 pages
19h 20m
English
Packt Publishing
Content preview from Python Machine Learning - Third Edition

14

Going Deeper – The Mechanics of TensorFlow

In Chapter 13, Parallelizing Neural Network Training with TensorFlow, we covered how to define and manipulate tensors and worked with the tf.data API to build input pipelines. We further built and trained a multilayer perceptron to classify the Iris dataset using the TensorFlow Keras API (tf.keras).

Now that we have some hands-on experience with TensorFlow neural network (NN) training and machine learning, it's time to take a deeper dive into the TensorFlow library and explore its rich set of features, which will allow us to implement more advanced deep learning models in upcoming chapters.

In this chapter, we will use different aspects of TensorFlow's API to implement NNs. In particular, we will ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Introduction to Machine Learning with Python

Introduction to Machine Learning with Python

Andreas C. Müller, Sarah Guido
Python Machine Learning, Second Edition - Second Edition

Python Machine Learning, Second Edition - Second Edition

Sebastian Raschka, Jared Huffman, Vahid Mirjalili, Ryan Sun

Publisher Resources

ISBN: 9781789955750Supplemental Content