Skip to Content
Python Machine Learning - Third Edition
book

Python Machine Learning - Third Edition

by Sebastian Raschka, Vahid Mirjalili
December 2019
Beginner to intermediate
772 pages
19h 20m
English
Packt Publishing
Content preview from Python Machine Learning - Third Edition

15

Classifying Images with Deep Convolutional Neural Networks

In the previous chapter, we looked in depth at different aspects of the TensorFlow API, you became familiar with tensors and decorating functions, and you learned how to work with TensorFlow Estimators. In this chapter, you will now learn about convolutional neural networks (CNNs) for image classification. We will start by discussing the basic building blocks of CNNs, using a bottom-up approach. Then, we will take a deeper dive into the CNN architecture and explore how to implement CNNs in TensorFlow. In this chapter, we will cover the following topics:

  • Convolution operations in one and two dimensions
  • The building blocks of CNN architectures
  • Implementing deep CNNs in TensorFlow ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Introduction to Machine Learning with Python

Introduction to Machine Learning with Python

Andreas C. Müller, Sarah Guido
Python Machine Learning, Second Edition - Second Edition

Python Machine Learning, Second Edition - Second Edition

Sebastian Raschka, Jared Huffman, Vahid Mirjalili, Ryan Sun

Publisher Resources

ISBN: 9781789955750Supplemental Content