PREFACE

Regression analysis has become one of the most widely used statistical tools for analyzing multifactor data. It is appealing because it provides a conceptually simple method for investigating functional relationships among variables. The standard approach in regression analysis is to take data, fit a model, and then evaluate the fit using statistics such as t, F, and R2. Our approach is much broader. We view regression analysis as a set of data analytic techniques that examine the interrelationships among a given set of variables. The emphasis is not on formal statistical tests and probability calculations. We argue for an informal analysis directed towards uncovering patterns in the data.

We utilize most standard and some not so standard summary statistics on the basis of their intuitive appeal. We rely heavily on graphical representations of the data, and employ many variations of plots of regression residuals. We are not overly concerned with precise probability evaluations. Graphical methods for exploring residuals can suggest model deficiencies or point to troublesome observations. Upon further investigation into their origin, the troublesome observations often turn out to be more informative than the well-behaved observations. We notice often that more information is obtained from a quick examination of a plot of residuals than from a formal test of statistical significance of some limited null-hypothesis. In short, the presentation in the chapters of this book is ...

Get Regression Analysis by Example, 4th Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.