CHAPTER 1

INTRODUCTION

1.1 WHAT IS REGRESSION ANALYSIS?

Regression analysis is a conceptually simple method for investigating functional relationships among variables. A real estate appraiser may wish to relate the sale price of a home from selected physical characteristics of the building and taxes (local, school, county) paid on the building. We may wish to examine whether cigarette consumption is related to various socioeconomic and demographic variables such as age, education, income, and price of cigarettes. The relationship is expressed in the form of an equation or a model connecting the response or dependent variable and one or more explanatory or predictor variables. In the cigarette consumption example, the response variable is cigarette consumption (measured by the number of packs of cigarette sold in a given state on a per capita basis during a given year) and the explanatory or predictor variables are the various socioeconomic and demographic variables. In the real estate appraisal example, the response variable is the price of a home and the explanatory or predictor variables are the characteristics of the building and taxes paid on the building.

We denote the response variable by Y and the set of predictor variables by X1, X2,…, Xp, where p denotes the number of predictor variables. The true relationship between Y and X1, X2,…, Xp can be approximated by the regression model

where ε is assumed to be a random error representing the discrepancy in the approximation. ...

Get Regression Analysis by Example, 4th Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.