Skip to Content
Time Series Analysis with Python Cookbook
book

Time Series Analysis with Python Cookbook

by Tarek A. Atwan
June 2022
Beginner to intermediate content levelBeginner to intermediate
630 pages
13h 18m
English
Packt Publishing
Content preview from Time Series Analysis with Python Cookbook

10

Building Univariate Time Series Models Using Statistical Methods

In Chapter 9, Exploratory Data Analysis and Diagnosis, you were introduced to several concepts to help you understand the time series process. Such recipes included Decomposing time series data, Detecting time series stationarity, Applying power transformations, and Testing for autocorrelation in time series data. These techniques will come in handy in the statistical modeling approach that will be discussed in this chapter.

When working with time series data, different methods and models can be used, depending on whether the time series is univariate or multivariate, seasonal or non-seasonal, stationary or non-stationary, and linear or nonlinear. If you list the assumptions ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Getting Started with Time Series Forecasting in Python

Getting Started with Time Series Forecasting in Python

Marco Peixeiro

Publisher Resources

ISBN: 9781801075541Supplemental Content