## Book description

For courses in algebra and trigonometry.

Visualize. Interact. Succeed.

Beecher, Penna, and Bittinger’s Algebra and Trigonometry is known for enabling students to “see the math” through its focus on visualization and early introduction to functions. With the Fifth Edition, the authors continue to innovate by creating and positioning review material to provide a more effective tool for teachers and students.

25 Just-In-Time review topics are placed throughout the text and MyMathLab to help students right when they need it most.

This, along with the existing Mid-chapter Mixed Review exercises, Study Guide summaries, and the new MyMathLab with Integrated Review course, students have an unparalleled amount of review resources to help them be successful in the course.

Also available with MyMathLab™

MyMathLab is an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. Within its structured environment, students practice what they learn, test their understanding, and pursue a personalized study plan that helps them absorb course material and understand difficult concepts. With this edition, the authors focused on developing MyMathLab features that help better prepare students and get them thinking more visually and conceptually.

1. Algebra & Trigonometry
2. Contents
3. Preface
4. Get the most out of MyMathLab®
5. Resources for Success
6. To the Student
7. Chapter 1 Graphs, Functions, and Models
1. 1.1 Introduction to Graphing
1. Graphs
1. Example 1
2. Solutions of Equations
1. Example 2
3. Graphs of Equations
1. Example 3
2. Example 4
3. Example 5
4. The Distance Formula
1. Example 6
2. Example 7
5. Midpoints of Segments
1. Example 8
2. Example 9
6. Circles
1. Example 10
2. Example 11
3. Visualizing the Graph
4. 1.1 Exercise Set
2. 1.2 Functions and Graphs
1. Functions
1. Example 1
2. Example 2
3. Example 3
2. Notation for Functions
1. Example 4
3. Graphs of Functions
1. Example 5
2. Example 6
3. Example 7
4. Finding Domains of Functions
1. Example 8
2. Example 9
5. Visualizing Domain and Range
1. Example 10
6. Applications of Functions
1. Example 11
2. 1.2 Exercise Set
3. 1.3 Linear Functions, Slope, and Applications
1. Linear Functions
2. The Linear Function f(x)=mx+b and Slope
1. Example 1
2. Example 2
3. Applications of Slope
1. Example 3
2. Example 4
3. Example 5
4. Slope–Intercept Equations of Lines
1. Example 6
2. Example 7
5. Graphing f(x)=mx+b Using m and b
1. Example 8
6. Applications of Linear Functions
1. Example 9
4. Visualizing the Graph
5. 1.3 Exercise Set
6. Mid-Chapter Mixed Review
7. 1.4 Equations of Lines and Modeling
1. Slope–Intercept Equations of Lines
1. Example 1
2. Example 2
2. Point–Slope Equations of Lines
1. Example 3
3. Parallel Lines
4. Perpendicular Lines
1. Example 4
2. Example 5
5. Mathematical Models
6. Curve Fitting
1. Example 6
2. The Correlation Coefficient
8. 1.4 Exercise Set
9. 1.5 Linear Equations, Functions, Zeros, and Applications
1. Linear Equations
1. Example 1
1. Solution
2. Example 2
1. Solution
2. Special Cases
1. Example 3
2. Example 4
3. Applications Using Linear Models
1. Example 5
2. Example 6
3. Example 7
4. Example 8
5. Example 9
6. Example 10
4. Zeros of Linear Functions
10. 1.5 Exercise Set
11. 1.6 Solving Linear Inequalities
1. Linear Inequalities
1. Example 1
2. Example 2
2. Compound Inequalities
1. Example 3
2. Example 4
3. An Application
1. Example 5
12. 1.6 Exercise Set
1. Skill Maintenance
2. Synthesis
13. Chapter 1 Summary and Review
1. Study Guide
2. Review Exercises
3. 1 Chapter Test
8. Chapter 2 More on Functions
1. 2.1 Increasing, Decreasing, and Piecewise Functions; Applications
1. Increasing, Decreasing, and Constant Functions
1. Example 1
2. Relative Maximum and Minimum Values
1. Example 2
3. Applications of Functions
1. Example 3
2. Example 4
4. Functions Defined Piecewise
1. Example 5
2. Example 6
3. Example 7
4. Example 8
5. Example 9
6. 2.1 Exercise Set
2. 2.2 The Algebra of Functions
1. The Algebra of Functions: Sums, Differences, Products, and Quotients
1. Example 1
2. Example 2
2. Difference Quotients
1. Example 3
2. Example 4
3. Example 5
4. 2.2 Exercise Set
3. 2.3 The Composition of Functions
1. The Composition of Functions
1. Example 1
2. Example 2
3. Example 3
2. Decomposing a Function as a Composition
1. Example 4
2. Example 5
3. 2.3 Exercise Set
4. Mid-Chapter Mixed Review
4. 2.4 Symmetry
1. Symmetry
2. Even Functions and Odd Functions
5. 2.4 Exercise Set
6. 2.5 Transformations
1. Transformations of Functions
2. Vertical Translations and Horizontal Translations
1. Example 1
3. Reflections
1. Example 2
4. Vertical and Horizontal Stretchings and Shrinkings
1. Example 3
2. Example 4
3. Visualizing the Graph
5. 2.5 Exercise Set
7. 2.6 Variation and Applications
1. Direct Variation
1. Example 1
2. Example 2
2. Inverse Variation
1. Example 3
2. Example 4 Filling a Swimming Pool.
3. Combined Variation
1. Example 5
2. Example 6
3. Example 7
4. Example 8
4. 2.6 Exercise Set
1. Skill Maintenance
8. Chapter 2 Summary and Review
1. Study Guide
2. Review Exercises
3. 2 Chapter Test
9. Chapter 3 Quadratic Functions and Equations; Inequalities
1. 3.1 The Complex Numbers
1. The Complex-Number System
1. Example 1
1. Example 2
3. Multiplication
1. Example 3
2. Example 4
4. Conjugates and Division
1. Example 5
2. Example 6
5. 3.1 Exercise Set
2. 3.2 Quadratic Equations, Functions, Zeros, and Models
2. Completing the Square
1. Example 3
2. Example 4
1. Example 5
2. Example 6
4. The Discriminant
1. Example 7
2. Example 8
6. Applications
1. Example 9
2. Example 10
3. Example 11
7. 3.2 Exercise Set
3. 3.3 Analyzing Graphs of Quadratic Functions
1. Graphing Quadratic Functions of the Type f(x)=a(x−h)2+k
2. Graphing Quadratic Functions of the Type f(x)=ax2+bx+c, a≠0
1. Example 1
2. Example 2
3. Example 3
4. Example 4
3. Applications
1. Example 5
2. Example 6
3. Example 7
4. Visualizing the Graph
5. 3.3 Exercise Set
4. Mid-Chapter Mixed Review
5. 3.4 Solving Rational Equations and Radical Equations
1. Rational Equations
1. Example 1
2. Example 2
3. Example 3
1. Example 4
2. Example 5
3. Example 6
3. 3.4 Exercise Set
6. 3.5 Solving Equations and Inequalities with Absolute Value
1. Equations with Absolute Value
1. Example 1
2. Example 2
2. Inequalities with Absolute Value
1. Example 3
2. Example 4
3. 3.5 Exercise Set
1. Skill Maintenance
2. Synthesis
7. Chapter 3 Summary and Review
1. Study Guide
2. Review Exercises
8. 3 Chapter Test
10. Chapter 4 Polynomial Functions and Rational Functions
1. 4.1 Polynomial Functions and Models
1. Example 1
2. Finding Zeros of Polynomial Functions
1. Example 2
2. Example 3
3. Example 4
4. Example 5
5. Example 6
3. Polynomial Models
1. Example 7
2. 4.1 Exercise Set
2. 4.2 Graphing Polynomial Functions
1. Graphing Polynomial Functions
1. Example 1
2. Example 2
3. Example 3
2. The Intermediate Value Theorem
1. Example 4
2. Visualizing the Graph
3. 4.2 Exercise Set
3. 4.3 Polynomial Division; The Remainder Theorem and the Factor Theorem
1. Division and Factors
1. Example 1
2. The Remainder Theorem and Synthetic Division
1. Example 2
2. Example 3
3. Example 4
4. Example 5
3. Finding Factors of Polynomials
1. Example 6
2. 4.3 Exercise Set
4. Mid-Chapter Mixed Review
5. 4.4 Theorems about Zeros of Polynomial Functions
1. The Fundamental Theorem of Algebra
2. Finding Polynomials with Given Zeros
1. Example 1
2. Example 2
3. Zeros of Polynomial Functions with Real Coefficients
4. Rational Coefficients
1. Example 3
2. Example 4
5. Integer Coefficients and the Rational Zeros Theorem
1. Example 5
2. Example 6
6. Descartes’ Rule of Signs
1. Example 7
2. Example 8
3. Example 9
4. Example 10
5. 4.4 Exercise Set
6. 4.5 Rational Functions
1. The Domain of a Rational Function
1. Example 1
2. Example 2
2. Asymptotes
1. Vertical Asymptotes
1. Example 3
3. Horizontal Asymptotes
1. Example 4
2. Example 5
3. Example 6
4. Oblique Asymptotes
1. Example 7
2. Example 8
3. Example 9
4. Example 10
5. Example 11
4. Applications
1. Example 12
2. Visualizing the Graph
3. 4.5 Exercise Set
1. Skill Maintenance
2. Synthesis
7. 4.6 Polynomial Inequalities and Rational Inequalities
1. Polynomial Inequalities
1. Example 1
2. Example 2
3. Example 3
4. Example 4
2. Rational Inequalities
1. Example 5
2. Example 6
3. Example 7
4. 4.6 Exercise Set
8. Chapter 4 Summary and Review
9. Review Exercises
10. Chapter Test
11. Chapter 5 Exponential Functions and Logarithmic Functions
1. 5.1 Inverse Functions
1. Inverses
2. Example 1
3. Example 2
2. Inverses and One-to-One Functions
1. Example 3
2. Example 4
3. Example 5
3. Finding Formulas for Inverses
1. Example 6
2. Example 7
3. Example 8
4. Inverse Functions and Composition
1. Example 9
5. Restricting a Domain
1. 5.1 Exercise Set
6. 5.2 Exponential Functions and Graphs
7. Graphing Exponential Functions
1. Example 1
2. Example 2
3. Example 3
8. Applications
1. Example 4
9. The Number e
1. Example 5
10. Graphs of Exponential Functions, Base e
1. Example 6
2. Example 7
3. 5.2 Exercise Set
11. 5.3 Logarithmic Functions and Graphs
1. Logarithmic Functions
1. Example 1
2. Finding Certain Logarithms
1. Example 2
3. Converting Between Exponential Equations and Logarithmic Equations
1. Example 3
2. Example 4
4. Finding Logarithms on a Calculator
1. Example 5
5. Natural Logarithms
1. Example 6
6. Changing Logarithmic Bases
1. Example 7
2. Example 8
7. Graphs of Logarithmic Functions
1. Example 9
2. Example 10
3. Example 11
8. Applications
1. Example 12
2. Example 13
3. Visualizing the Graph
4. 5.3 Exercise Set
12. Mid-Chapter Mixed Review
13. 5.4 Properties of Logarithmic Functions
1. Logarithms of Products
1. Example 1
2. Example 2
2. Logarithms of Powers
1. Example 3
3. Logarithms of Quotients
1. Example 4
2. Example 5
4. Applying the Properties
1. Example 6
2. Example 7
3. Example 8
4. Example 9
5. Simplifying Expressions of the Type loga ax and aloga x
1. Example 10
2. Example 11
3. 5.4 Exercise Set
14. 5.5 Solving Exponential Equations and Logarithmic Equations
1. Solving Exponential Equations
2. Solving Logarithmic Equations
1. Example 6
2. Example 7
3. Example 8
4. Example 9
5. 5.5 Exercise Set
15. 5.6 Applications and Models: Growth and Decay; Compound Interest
1. Population Growth
1. Example 1
2. Interest Compounded Continuously
1. Example 2
2. Example 3
3. Models of Limited Growth
1. Example 4
4. Exponential Decay
1. Example 5
5. 5.6 Exercise Set
1. Skill Maintenance
2. Synthesis
16. Chapter 5 Summary and Review
1. Study Guide
2. Review Exercises
17. Chapter Test
12. Chapter 6 The Trigonometric Functions
1. 6.1 Trigonometric Functions of Acute Angles
1. The Trigonometric Ratios
1. Example 1
2. Example 2
3. Example 3
2. The Six Functions Related
1. Example 4
3. Function Values of 30°, 45° , and 60°
1. Example 5 Height of a Fireworks Display.
4. Function Values of Any Acute Angle
1. Example 6
2. Example 7
3. Example 8
4. Example 9
5. Cofunctions and Complements
1. Example 11
2. 6.1 Exercise Set
2. 6.2 Applications of Right Triangles
1. Solving Right Triangles
1. Example 1
2. Example 2
3. Solution
3. Applications
1. Example 3 Walking at Niagara Falls.
2. Example 4 Rafters for a House.
3. Example 5 Gondola Aerial Lift.
4. Example 6 Height of a Bamboo Plant.
4. Bearing: First-Type
1. Example 7 Distance to a Forest Fire.
2. Example 8 U.S. Cellular Field.
1. Solution
2. 6.2 Exercise Set
5. 6.3 Trigonometric Functions of Any Angle
1. Angles, Rotations, and Degree Measure
1. Example 1
2. Example 2
2.   Trigonometric Functions of Angles or Rotations
1. Example 3
3. The Six Functions Related
1. Example 4
4. Terminal Side on an Axis
1. Example 5
2. Example 6
5. Reference Angles: 30°, 45° and 60°
1. Example 7
6. Function Values for Any Angle
1. Example 8
2. Example 9
3. Bearing: Second-Type
2. 6.3 Exercise Set
3. Skill Maintenance
4. Synthesis
6. Mid-Chapter Mixed Review
7. 6.4 Radians, Arc Length, and Angular Speed
1. Distances on the Unit Circle
1. Example 1
2. Example 2
1. Example 3
2. Example 4
3. Example 5
4. Example 6
3. Arc Length and Central Angles
1. Example 7
2. Example 8
4. Linear Speed and Angular Speed
1. Example 9 Linear Speed of an Earth Satellite.
2. Example 10 Angular Speed of a Capstan.
3. Example 11 Angle of Revolution.
4. Example 12 Angular Speed of a Gear Wheel.
5. 6.4 Exercise Set
1. Skill Maintenance
2. Synthesis
8. 6.5 Circular Functions: Graphs and Properties
1. Reflections on the Unit Circle
1. Example 1
2. Finding Function Values
1. Example 2
2. Example 3
9. Graphs of the Sine and Cosine Functions
10. Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions
1. 6.5 Exercise Set
11. 6.6 Graphs of Transformed Sine and Cosine Functions
1. Variations of Basic Graphs
1. The Constant D
1. Example 1
2. The Constant A
3. Solution
4. The Constant B
1. Example 4
5. The Constant C
1. Example 5
2. Example 6
3. Example 7
4. Example 8
2. Graphs of Sums: Addition of Ordinates
1. Example 9
3. Damped Oscillation: Multiplication of Ordinates
1. Example 10
2. Visualizing the Graph
3. 6.6 Exercise Set
12. Chapter 6 Summary and Review
1. Study Guide
1. Review Exercises
1. Synthesis
2. Collaborative Discussion and Writing
3. 6 Chapter Test
13. Chapter 7 Trigonometric Identities, Inverse Functions, and Equations
1. 7.1 Identities: Pythagorean and Sum and Difference
1. Pythagorean Identities
2. Simplifying Trigonometric Expressions
1. Example 1
2. Example 2
3. Example 3
4. Example 4
5. Example 5
6. Example 6
7. Example 7
3. Sum and Difference Identities
1. Example 8
2. Example 9
3. Example 10
4. Example 11
5. Example 12
6. 7.1 Exercise Set
2. 7.2 Identities: Cofunction, Double-Angle, and Half-Angle
1. Cofunction Identities
1. Example 1
2. Example 2
2. Double-Angle Identities
1. Example 3
2. Example 4
3. Half-Angle Identities
1. Example 5
2. Example 6
3. 7.2 Exercise Set
3. 7.3 Proving Trigonometric Identities
1. The Logic of Proving Identities
2. Proving Identities
1. Example 1
2. Example 2
3. Example 3
4. Example 4
5. Example 5
3. Product-to-Sum and Sum-to-Product Identities
1. Example 6
2. Example 7
3. 7.3 Exercise Set
4. Mid-Chapter Mixed Review
5. 7.4 Inverses of the Trigonometric Functions
1.  Restricting Ranges to Define Inverse Functions
1. Example 1
2. Example 2
2.  Composition of Trigonometric Functions and Their Inverses
1. Example 3
2. Example 4
3. Example 5
4. Example 6
5. Example 7
6. 7.4 Exercise Set
1. Skill Maintenance
2. Synthesis
6. 7.5 Solving Trigonometric Equations
1. Example 1
2. Example 2
3. Example 3
4. Example 4
5. Example 5
6. Example 6
7. Example 7
8. Example 8
9. Example 9
10. Example 10
11. Example 11
12. Visualizing the Graph
13. 7.5 Exercise Set
7. Chapter 7 Summary and Review
8. Review Exercises
9. 7 Chapter Test
14. Chapter 8 Applications of Trigonometry
1. 8.1 The Law of Sines
1. Solving Oblique Triangles
2. The Law of Sines
3. Solving Triangles (AAS and ASA)
1. Example 1
2. Example 2 Vietnam Veterans Memorial.
4. Solving Triangles (SSA)
1. Angle B Is Acute
2. Angle B Is Obtuse
3. Example 3 No solution.
4. Example 4 One solution.
5. Example 5 Two solutions.
5. The Area of a Triangle
1. Example 6 Area of a Triangular Garden.
2. 8.1 Exercise Set
2. 8.2 The Law of Cosines
1. The Law of Cosines
2. Solving Triangles (SAS)
1. Example 1
2. Example 2 Recording Studio.
3. Solving Triangles (SSS)
1. Example 3
2. Example 4 Wedge Bevel.
3. Example 5
4. 8.2 Exercise Set
3. 8.3 Complex Numbers: Trigonometric Notation
1. Graphical Representation
1. Example 1
2. Example 2
2. Trigonometric Notation for Complex Numbers
1. Example 3
2. Example 4
3. Multiplication and Division with Trigonometric Notation
1. Example 5
2. Example 6
3. Example 7
4. Example 8
4. Powers of Complex Numbers
1. Example 9
5. Roots of Complex Numbers
1. Example 10
2. Example 11
3. Example 12
6. 8.3 Exercise Set
7. Mid-Chapter Mixed Review
4. 8.4 Polar Coordinates and Graphs
1. Polar Coordinates
1. Example 1
2. Example 2
3. Example 3
2. Polar Equations and Rectangular Equations
1. Example 4
2. Example 5
3. Graphing Polar Equations
1. Example 6
2. Example 7
3. Visualizing the Graph
4. 8.4 Exercise Set
5. 8.5 Vectors and Applications
6. 8.6 Vector Operations
7. Chapter 8 Summary and Review Study Guide
8. Review Exercises
9. Chapter Test
15. Chapter 9 Systems of Equations and Matrices
1. 9.1 Systems of Equations in Two Variables
1. Solving Systems of Equations Graphically
1. Example 1
2. The Substitution Method
1. Example 2
3. The Elimination Method
1. Example 3
2. Example 4
3. Example 5
4. Applications
1. Example 6
2. Example 7
3. Example 8
5. Visualizing the Graph
6. 9.1 Exercise Set
2. 9.2 Systems of Equations in Three Variables
1. Solving Systems of Equations in Three Variables
1. Example 1
2. Example 2
2. Applications
1. Example 3
3. Mathematical Models and Applications
1. Example 4
4. 9.2 Exercise Set
3. 9.3 Matrices and Systems of Equations
1. Matrices and Row-Equivalent Operations
2. Gaussian Elimination with Matrices
1. Example 1
2. Example 2
3. Gauss–Jordan Elimination
1. Example 3
2. Example 4
4. 9.3 Exercise Set
4. 9.4 Matrix Operations
1. Example 1
2. Example 2
3. Example 3
2. Scalar Multiplication
1. Example 4
2. Example 5
3. Products of Matrices
1. Example 6
2. Example 7
4. Matrix Equations
1. Example 8
5. 9.4 Exercise Set
6. Mid-Chapter Mixed Review
5. 9.5 Inverses of Matrices
1. The Identity Matrix
1. Example 1
2. The Inverse of a Matrix
1. Example 2
2. Example 3
3. Example 4
3. Solving Systems of Equations
1. Example 5
4. 9.5 Exercise Set
6. 9.6 Determinants and Cramer’s Rule
1. Determinants of Square Matrices
1. Example 1
2. Evaluating Determinants Using Cofactors
1. Example 2
2. Example 3
3. Example 4
3. Cramer’s Rule
1. Example 5
2. Example 6
4. 9.6 Exercise Set
7. 9.7 Systems of Inequalities and Linear Programming
1. Graphs of Linear Inequalities
1. Example 1
2. Example 2
3. Example 3
4. Example 4
2. Systems of Linear Inequalities
1. Example 5
2. Example 6
3. Applications: Linear Programming
1. Example 7
4. 9.7 Exercise Set
8. 9.8 Partial Fractions
1. Partial Fraction Decompositions
1. Example 1
2. Example 2
3. Example 3
4. Example 4
5. Example 5
2. 9.8 Exercise Set
9. Chapter 6 Summary and Review
1. Study Guide
2. Review Exercises
3. 6 Chapter Test
16. Chapter 10 Analytic Geometry Topics
1. 10.1 The Parabola
1. Parabolas
1. Example 1
2. Example 2
2. Finding Standard Form by Completing the Square
1. Example 3
2. Example 4
3. Applications
4. 10.1 Exercise Set
2. 10.2 The Circle and the Ellipse
1. Circles
1. Example 1
2. Ellipses
1. Example 2
2. Example 3
3. Example 4
3. Applications
4. 10.2 Exercise Set
1. Skill Maintenance
2. Synthesis
3. 10.3 The Hyperbola
1. Standard Equations of Hyperbolas
1. Example 1
2. Example 2
3. Example 3
2. Applications
3. 10.3 Exercise Set
4. 10.4 Nonlinear Systems of Equations and Inequalities
1. Nonlinear Systems of Equations
2. Modeling and Problem Solving
1. Example 5
3. Nonlinear Systems of Inequalities
1. Example 6
2. Example 7
4. Visualizing the Graph
5. 10.4 Exercise Set
1. Skill Maintenance
2. Synthesis
1. Mid-Chapter Mixed Review
6. 10.5 Rotation of Axes
1. Rotation of Axes
1. Example 1
2. Example 2
2. The Discriminant
1. Example 3
2. Example 4
3. 10.5 Exercise Set
7. 10.6 Polar Equations of Conics
1. Polar Equations of Conics
1. Example 1
2. Example 2
3. Example 3
2. Converting from Polar Equations to Rectangular Equations
1. Example 4
3. Finding Polar Equations of Conics
1. Example 5
2. 10.6 Exercise Set
8. 10.7 Parametric Equations
1. Graphing Parametric Equations
1. Example 1
2. Determining a Rectangular Equation for Given Parametric Equations
1. Example 2
2. Example 3
3. Determining Parametric Equations for a Given Rectangular Equation
1. Example 4
4. Applications
1. Example 5 Projectile Motion.
5. Exercise Set 10.7
5. Chapter 10 Summary and Review Study Guide
6. Review Exercises
17. Chapter 11 Sequences, Series, and Combinatorics
1. 11.1 Sequences and Series
1. Sequences
1. Example 1
2. Finding the General Term
1. Example 2
3. Sums and Series
1. Example 3
4. Sigma Notation
1. Example 4
2. Example 5
5. Recursive Definitions
1. Example 6
2. 11.1 Exercise Set
2. 11.2 Arithmetic Sequences and Series
1. Arithmetic Sequences
1. Example 1
2. Example 2
3. Example 3
4. Example 4
2. Sum of the First n Terms of an Arithmetic Sequence
1. Example 5
2. Example 6
3. Example 7
3. Applications
1. Example 8
2. Example 9
3. 11.2 Exercise Set
3. 11.3 Geometric Sequences and Series
1. Geometric Sequences
1. Example 1
2. Example 2
3. Example 3
2. Sum of the First n Terms of a Geometric Sequence
1. Example 4
2. Example 5
3. Infinite Geometric Series
1. Example 6
2. Example 7
4. Applications
1. Example 8
2. Example 9
3. Example 10
4. Visualizing the Graph
5. 11.3 Exercise Set
4. 11.4 Mathematical Induction
1. Proving Infinite Sequences of Statements
1. Example 1
2. Example 2
3. Example 3
4. 11.4 Exercise Set
5. Mid-Chapter Mixed Review
5. 11.5 Combinatorics: Permutations
1. Permutations
1. Example 1
2. Example 2
3. Example 3
4. Example 4
2. Factorial Notation
1. Example 5
3. Permutations of n Objects Taken k at a Time
1. Example 6
2. Example 7
3. Example 8
4. Example 9
4. Permutations of Sets with Nondistinguishable Objects
1. Example 10
2. 11.5 Exercise Set
6. 11.6 Combinatorics: Combinations
1. Combinations
1. Example 1
2. Example 2
3. Example 3
4. Example 4
5. Example 5
6. 11.6 Exercise Set
7. 11.7 The Binomial Theorem
1. Binomial Expansion Using Pascal’s Triangle
1. Example 1
2. Example 2
2. Binomial Expansion Using Factorial Notation
1. Example 3
2. Example 4
3. Finding a Specific Term
1. Example 5
2. Example 6
4. Total Number of Subsets
1. Example 7
2. Example 8
3. 11.7 Exercise Set
8. 11.8 Probability
1. Experimental Probability and Theoretical Probability
2. Computing Experimental Probabilities
1. Example 1
2. Example 2
3. Theoretical Probability
1. Example 3
2. Example 4
3. Example 5
4. Example 6
5. Example 7
6. Example 8
7. Example 9
8. Example 10
9. 11.8 Exercise Set
9. Chapter 11 Summary and Review
1. Study Guide
2. Review Exercises
3. 11 Chapter Test
18. Just-In-Time Review