Gradient descent and backpropagation

Let's consider the following linear regression example where we have a set of training data. Based on the training data, we use forward propagation to model a straight line prediction function, h(x), as in the following diagram:

Figure 4.11: Forward propagation to model a straight line function

The difference between the actual and predicted value for an individual training sample contributes to the overall error for the prediction function. The goodness of fit for a neural network is defined with a cost function. It measures how well a neural network performed with respect to the training dataset when ...

Get Artificial Intelligence for Big Data now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.