Convolutional neural networks

All the machine learning/deep learning algorithms you have learned about imply that the type of input data is one-dimensional. When you look at a real-world application, however, data is not necessarily one-dimensional. A typical case is an image. Though we can still convert two-dimensional (or higher-dimensional) data into a one-dimensional array from the standpoint of implementation, it would be better to build a model that can handle two-dimensional data as it is. Otherwise, some information embedded in the data, such as positional relationships, might be lost when flattened to one dimension.

To solve this problem, an algorithm called Convolutional Neural Networks (CNN) was proposed. In CNN, features are extracted ...

Get Deep Learning: Practical Neural Networks with Java now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.