Skip to Content
Deep Learning with TensorFlow - Second Edition
book

Deep Learning with TensorFlow - Second Edition

by Giancarlo Zaccone, Vihan Jain, Md. Rezaul Karim, Motaz Saad
March 2018
Intermediate to advanced content levelIntermediate to advanced
484 pages
10h 31m
English
Packt Publishing
Content preview from Deep Learning with TensorFlow - Second Edition

Summary

We have seen how to implement FFNN architectures that are characterized by a set of input units, a set of output units, and one or more hidden units that connect the input level from that output. We have seen how to organize the network layers so that the connections between the levels are total and in a single direction: each unit receives a signal from all the units of the previous layer and transmits its output value, suitably weighed to all units of the next layer.

We have also seen how to define an activation function (for example, sigmoid, ReLU, tanh, and softmax) for each layer, where the choice of an activation function depends on the architecture and the problem being addressed.

We then implemented four different FFNN models. The ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with TensorFlow

Deep Learning with TensorFlow

Giancarlo Zaccone, Fabrizio Milo, Md. Rezaul Karim, Ahmed Menshawy
Deep Learning with TensorFlow 2 and Keras - Second Edition

Deep Learning with TensorFlow 2 and Keras - Second Edition

Antonio Gulli, Dr. Amita Kapoor, Sujit Pal
TensorFlow for Deep Learning

TensorFlow for Deep Learning

Bharath Ramsundar, Reza Bosagh Zadeh

Publisher Resources

ISBN: 9781788831109Supplemental Content