March 2018
Intermediate to advanced
484 pages
10h 31m
English
In this chapter, we implemented some optimizing networks called autoencoders. An autoencoder is basically a data compression network model. It is used to encode a given input into a representation of smaller dimensions, and then a decoder can be used to reconstruct the input back from the encoded version. All the autoencoders we implemented contain an encoding and a decoding part.
We also saw how to improve the autoencoders' performance by introducing noise during the network training and building a denoising autoencoder. Finally, we applied the concepts of CNNs introduced in Chapter 4, TensorFlow on a Convolutional Neural Network with the implementation of convolutional autoencoders.
Even when the number of hidden units is large, we can ...