Skip to Content
Hands-On Automated Machine Learning
book

Hands-On Automated Machine Learning

by Sibanjan Das, Umit Mert Cakmak
April 2018
Beginner to intermediate content levelBeginner to intermediate
282 pages
6h 52m
English
Packt Publishing
Content preview from Hands-On Automated Machine Learning

Excluding features with low variance

Features without much variance or variability in the data do not provide any information to an ML model for learning the patterns. For example, a feature with only 5 as a value for every record in a dataset is a constant and is an unimportant feature to be used. Removing this feature is essential. 

We can use the VarianceThreshold method from scikit-learn's featureselection package to remove all features whose variance doesn't meet certain criteria or threshold. The sklearn.feature_selection module implements feature selection algorithms. It currently includes univariate filter selection methods and the recursive feature elimination algorithm. The following is an example to illustrate this method:

%matplotlib ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Automated Machine Learning

Automated Machine Learning

Adnan Masood
R: Unleash Machine Learning Techniques

R: Unleash Machine Learning Techniques

Raghav Bali, Dipanjan Sarkar, Brett Lantz, Cory Lesmeister

Publisher Resources

ISBN: 9781788629898Supplemental Content