Skip to Content
Hands-On Convolutional Neural Networks with TensorFlow
book

Hands-On Convolutional Neural Networks with TensorFlow

by Iffat Zafar, Giounona Tzanidou, Richard Burton, Nimesh Patel, Leonardo Araujo
August 2018
Intermediate to advanced
272 pages
7h 2m
English
Packt Publishing
Content preview from Hands-On Convolutional Neural Networks with TensorFlow

Optimization

Now we have defined a loss function to be used; we can use this loss function to train our model. As is shown in the previous equations, the loss function is a function of weights and biases. Therefore, all we have to do is an exhaustive search of the space of weights and biases and see which combination minimizes the loss best. When we have one- or two-dimensional weight vectors, this process might be okay, but when the weight vector space gets too big, we need a more efficient solution. To do this, we will use an optimization technique called gradient descent.

By using our loss function and calculus, gradient descent is able to see how to adjust the values of the weights and biases of our model in such a way that the value ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Computer Vision Using Deep Learning: Neural Network Architectures with Python and Keras

Computer Vision Using Deep Learning: Neural Network Architectures with Python and Keras

Vaibhav Verdhan

Publisher Resources

ISBN: 9781789130331Supplemental Content