Skip to Content
Hands-On Convolutional Neural Networks with TensorFlow
book

Hands-On Convolutional Neural Networks with TensorFlow

by Iffat Zafar, Giounona Tzanidou, Richard Burton, Nimesh Patel, Leonardo Araujo
August 2018
Intermediate to advanced
272 pages
7h 2m
English
Packt Publishing
Content preview from Hands-On Convolutional Neural Networks with TensorFlow

An autoencoder without the decoder

An encoder (autoencoder without the decoder part) that consists of two convolutional layers and one fully connected layer is presented as follows. The parent autoencoder was trained on the MNIST dataset. Therefore, the network takes as input an image of size 28x28x1 and at latent space, encodes it to a 10-dimensional vector, one dimension for each class:

# Only half of the autoencoder changed for classification class CAE_CNN_Encoder(object): ...... def build_graph(self, img_size=28): self.__x = tf.placeholder(tf.float32, shape=[None, img_size * img_size], name='IMAGE_IN') self.__x_image = tf.reshape(self.__x, [-1, img_size, img_size, 1]) self.__y_ = tf.placeholder("float", shape=[None, 10], name='Y') with ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Computer Vision Using Deep Learning: Neural Network Architectures with Python and Keras

Computer Vision Using Deep Learning: Neural Network Architectures with Python and Keras

Vaibhav Verdhan

Publisher Resources

ISBN: 9781789130331Supplemental Content