Skip to Content
Hands-On Convolutional Neural Networks with TensorFlow
book

Hands-On Convolutional Neural Networks with TensorFlow

by Iffat Zafar, Giounona Tzanidou, Richard Burton, Nimesh Patel, Leonardo Araujo
August 2018
Intermediate to advanced
272 pages
7h 2m
English
Packt Publishing
Content preview from Hands-On Convolutional Neural Networks with TensorFlow

Convolutional neural networks

We will now look at another type of neural network that is especially designed to work with data that has some spatial properties, such as images. This type of neural network is called a Convolutional Neural Network (CNN).

A CNN is mainly composed of layers called convolution layers that filter their layer inputs to find useful features within those inputs. This filtering operation is called convolution, which gives rise to the name of this kind of neural network.

The following diagram shows the 2-D convolution operation on an image and its result. It is important to remember that the filter kernel has a depth that matches the depth of the input (3 in this case):

It is also important to be clear that an input ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Computer Vision Using Deep Learning: Neural Network Architectures with Python and Keras

Computer Vision Using Deep Learning: Neural Network Architectures with Python and Keras

Vaibhav Verdhan

Publisher Resources

ISBN: 9781789130331Supplemental Content