O'Reilly logo

Hands-On Natural Language Processing with Python by Rajalingappaa Shanmugamani, Rajesh Arumugam

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Backpropagation

The goal of the training algorithm is to find the weights and biases of the network that minimize a certain loss function, which depends on the prediction output and the true labels or values. To accomplish this, the gradients of the loss function, with respect to the weights and biases, are computed at the output, and the errors are propagated backward, up to the input layer. These propagated errors are, in turn, used to compute the gradients of all of the intermediate layers, up to the input layer. This technique of computing gradients is called backpropagation. During each iteration of the process, the current error in the output prediction is propagated backward through the network, to compute gradients with respect to ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required