O'Reilly logo

Hands-On Natural Language Processing with Python by Rajalingappaa Shanmugamani, Rajesh Arumugam

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Summary

In this chapter, we focused on text generation and text summarization. Using GRU and RNN, we illustrated an example text generation model that can generate Linux kernel code. Such models, when applied to different domains or source input texts, can help us to understand the underlying structure and context. Next, we described the different types of text summarization. We explained a simple extractive summarization approach, using gensim to generate product review summaries. While extractive summarization reproduces words from the source text, abstractive summarization can generate novel and intuitive summaries.

To cover abstractive summarization, we introduced an encoder-decoder model, using GRU and RNN to summarize news text. We ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required