Skip to Content
Machine Learning with R, the tidyverse, and mlr
book

Machine Learning with R, the tidyverse, and mlr

by Hefin Rhys
April 2020
Intermediate to advanced
536 pages
16h 55m
English
Manning Publications
Content preview from Machine Learning with R, the tidyverse, and mlr

Chapter 18. Clustering based on density: DBSCAN and OPTICS

This chapter covers

  • Understanding density-based clustering
  • Using the DBSCAN and OPTICS algorithms

Our penultimate stop in unsupervised learning techniques brings us to density-based clustering. Density-based clustering algorithms aim to achieve the same thing as k-means and hierarchical clustering: partitioning a dataset into a finite set of clusters that reveals a grouping structure in our data.

In the last two chapters, we saw how k-means and hierarchical clustering identify clusters using distance: distance between cases, and distance between cases and their centroids. Density-based clustering comprises a set of algorithms that, as the name suggests, uses the density of cases to ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Advanced Machine Learning with R

Advanced Machine Learning with R

Cory Lesmeister, Dr. Sunil Kumar Chinnamgari
R Machine Learning Projects

R Machine Learning Projects

Dr. Sunil Kumar Chinnamgari

Publisher Resources

ISBN: 9781617296574Publisher SupportOtherPublisher WebsiteSupplemental ContentErrata PagePurchase Link