February 2022
Intermediate to advanced
774 pages
21h 56m
English
In the previous chapter, we learned about recurrent neural networks (RNNs) and their applications in natural language processing (NLP) through a sentiment analysis project. However, a new architecture has recently emerged that has been shown to outperform the RNN-based sequence-to-sequence (seq2seq) models in several NLP tasks. This is the so-called transformer architecture.
Transformers have revolutionized natural language processing and have been at the forefront of many impressive applications ranging from automated language translation (https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html) and modeling fundamental properties of protein ...