Skip to Content
Machine Learning with PyTorch and Scikit-Learn
book

Machine Learning with PyTorch and Scikit-Learn

by Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili
February 2022
Intermediate to advanced
774 pages
21h 56m
English
Packt Publishing
Content preview from Machine Learning with PyTorch and Scikit-Learn

17

Generative Adversarial Networks for Synthesizing New Data

In the previous chapter, we focused on recurrent neural networks for modeling sequences. In this chapter, we will explore generative adversarial networks (GANs) and see their application in synthesizing new data samples. GANs are considered to be one of the most important breakthroughs in deep learning, allowing computers to generate new data (such as new images).

In this chapter, we will cover the following topics:

  • Introducing generative models for synthesizing new data
  • Autoencoders, variational autoencoders, and their relationship to GANs
  • Understanding the building blocks of GANs
  • Implementing a simple GAN model to generate handwritten digits
  • Understanding transposed convolution ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Machine Learning with Scikit-Learn and PyTorch

Hands-On Machine Learning with Scikit-Learn and PyTorch

Aurélien Géron

Publisher Resources

ISBN: 9781801819312Supplemental Content