Skip to Content
Machine Learning with PyTorch and Scikit-Learn
book

Machine Learning with PyTorch and Scikit-Learn

by Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili
February 2022
Intermediate to advanced
774 pages
21h 56m
English
Packt Publishing
Content preview from Machine Learning with PyTorch and Scikit-Learn

2

Training Simple Machine Learning Algorithms for Classification

In this chapter, we will make use of two of the first algorithmically described machine learning algorithms for classification: the perceptron and adaptive linear neurons. We will start by implementing a perceptron step by step in Python and training it to classify different flower species in the Iris dataset. This will help us to understand the concept of machine learning algorithms for classification and how they can be efficiently implemented in Python.

Discussing the basics of optimization using adaptive linear neurons will then lay the groundwork for using more sophisticated classifiers via the scikit-learn machine learning library in Chapter 3, A Tour of Machine Learning ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Machine Learning with Scikit-Learn and PyTorch

Hands-On Machine Learning with Scikit-Learn and PyTorch

Aurélien Géron

Publisher Resources

ISBN: 9781801819312Supplemental Content