19
Reinforcement Learning for Decision Making in Complex Environments
In the previous chapters, we focused on supervised and unsupervised machine learning. We also learned how to leverage artificial neural networks and deep learning to tackle problems encountered with these types of machine learning. As you’ll recall, supervised learning focuses on predicting a category label or continuous value from a given input feature vector. Unsupervised learning focuses on extracting patterns from data, making it useful for data compression (Chapter 5, Compressing Data via Dimensionality Reduction), clustering (Chapter 10, Working with Unlabeled Data – Clustering Analysis), or approximating the training set distribution for generating new data (Chapter ...
Get Machine Learning with PyTorch and Scikit-Learn now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.