Now that we can extract features from text, we can train a classifier. The easiest classifier to get started with is the
`NaiveBayesClassifier`

class. It uses the
**Bayes theorem** to predict the probability that a given feature set belongs to a particular label. The formula is:

P(label | features) = P(label) * P(features | label) / P(features)

The following list describes the various parameters from the previous formula:

`P(label)`

: This is the prior probability of the label occurring, which is the likelihood that a random feature set will have the label. This is based on the number of training instances with the label compared to the total number of training instances. For example, if 60/100 training instances have the ...

Start Free Trial

No credit card required