Skip to Main Content
Python 3 Text Processing with NLTK 3 Cookbook - Second Edition
book

Python 3 Text Processing with NLTK 3 Cookbook - Second Edition

by Jacob Perkins
August 2014
Beginner to intermediate content levelBeginner to intermediate
304 pages
7h 10m
English
Packt Publishing
Content preview from Python 3 Text Processing with NLTK 3 Cookbook - Second Edition

Training a decision tree classifier

The DecisionTreeClassifier class works by creating a tree structure, where each node corresponds to a feature name and the branches correspond to the feature values. Tracing down the branches, you get to the leaves of the tree, which are the classification labels.

How to do it...

Using the same train_feats and test_feats variables we created from the movie_reviews corpus in the previous recipe, we can call the DecisionTreeClassifier.train() class method to get a trained classifier. We pass binary=True because all of our features are binary: either the word is present or it's not. For other classification use cases where you have multivalued features, you will want to stick to the default binary=False.

Tip

In this ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning - Third Edition

Python Machine Learning - Third Edition

Sebastian Raschka, Vahid Mirjalili
Python Cookbook, 3rd Edition

Python Cookbook, 3rd Edition

David Beazley, Brian K. Jones

Publisher Resources

ISBN: 9781782167853Supplemental Content