Measuring precision and recall of a classifier
In addition to accuracy, there are a number of other metrics used to evaluate classifiers. Two of the most common are precision and recall. To understand these two metrics, we must first understand false positives and false negatives. False positives happen when a classifier classifies a feature set with a label it shouldn't have gotten. False negatives happen when a classifier doesn't assign a label to a feature set that should have it. In a binary classifier, these errors happen at the same time.
Here's an example: the classifier classifies a movie review as pos
when it should have been neg
. This counts as a false positive for the pos
label, and a false negative for the neg
label. If the classifier ...
Get Python 3 Text Processing with NLTK 3 Cookbook now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.