O'Reilly logo

Scala: Guide for Data Science Professionals by Patrick R. Nicolas, Arun Manivannan, Pascal Bugnion

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Regularization

The ordinary least squares method for finding the regression parameters is a specific case of the maximum likelihood. Therefore, regression models are subject to the same challenge in terms of overfitting as any other discriminative model. You are already aware that regularization is used to reduce model complexity and avoid overfitting as stated in the Overfitting section of Chapter 2, Hello World!.

Ln roughness penalty

Regularization consists of adding a penalty function J(w) to the loss function (or RSS in the case of a regressive classifier) in order to prevent the model parameters (or weights) from reaching high values. A model that fits a training set very well tends to have many features variable with relatively large weights. ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required