O'Reilly logo

TensorFlow Machine Learning Cookbook by Nick McClure

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Using Placeholders and Variables

Placeholders and variables are key tools for using computational graphs in TensorFlow. We must understand the difference and when to best use them to our advantage.

Getting ready

One of the most important distinctions to make with the data is whether it is a placeholder or a variable. Variables are the parameters of the algorithm and TensorFlow keeps track of how to change these to optimize the algorithm. Placeholders are objects that allow you to feed in data of a specific type and shape and depend on the results of the computational graph, such as the expected outcome of a computation.

How to do it…

The main way to create a variable is by using the Variable() function, which takes a tensor as an input and outputs ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required