Understanding Loss Functions in Linear Regression

It is important to know the effect of loss functions in algorithm convergence. Here we will illustrate how the L1 and L2 loss functions affect convergence in linear regression.

Getting ready

We will use the same iris dataset as in the prior recipe, but we will change our loss functions and learning rates to see how convergence changes.

How to do it…

  1. The start of the program is unchanged from before until we get to our loss function. We load the necessary libraries, start a session, load the data, create placeholders, and define our variables and model. One thing to note is that we are pulling out our learning rate and model iterations. We are doing this because we want to show the effect of quickly ...

Get TensorFlow Machine Learning Cookbook now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.