The CycleGAN Model

Figure 7.1.3 shows the network model of the CycleGAN. The objective of the CycleGAN is to learn the function:

y' = G(x) (Equation 7.1.1)

That generates fake images, y ', in the target domain as a function of the real source image, x. Learning is unsupervised by capitalizing only on the available real images, x, in the source domain and real images, y, in the target domain.

Unlike regular GANs, CycleGAN imposes the cycle-consistency constraint. The forward cycle-consistency network ensures that the real source data can be reconstructed from the fake target data:

x' = F(G(x)) (Equation 7.1.2)

This is done by minimizing the forward cycle-consistency L1 loss:

(Equation 7.1.3)

The network is symmetric. The backward cycle-consistency ...

Get Advanced Deep Learning with Keras now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.