Q-Learning example
To illustrate the Q-Learning algorithm, we need to consider a simple deterministic environment, as shown in the following figure. The environment has six states. The rewards for allowed transitions are shown. The reward is non-zero in two cases. Transition to the Goal (G) state has +100 reward while moving into Hole (H) state has -100 reward. These two states are terminal states and constitute the end of one episode from the Start state:
To formalize the identity of each state, we need to use a (row, column) identifier as shown in the following figure. Since the agent has not ...
Get Advanced Deep Learning with Keras now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.