Skip to Content
Advanced Machine Learning with R
book

Advanced Machine Learning with R

by Cory Lesmeister, Dr. Sunil Kumar Chinnamgari
May 2019
Intermediate to advanced
664 pages
15h 41m
English
Packt Publishing
Content preview from Advanced Machine Learning with R

K-nearest neighbors model for benchmarking the performance

In this section, we will implement the k-nearest neighbors (KNN) algorithm to build a model on our IBM attrition dataset. Of course, we are already aware from EDA that we have a class imbalance problem in the dataset at hand. However, we will not be treating the dataset for class imbalance for now as this is an entire area on its own and several techniques are available in this area and therefore out of scope for the ML ensembling topic covered in this chapter. We will, for now, consider the dataset as is and build ML models. Also, for class imbalance datasets, Kappa or precision and recall or the area under the curve of the receiver operating characteristic (AUROC) are the appropriate ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning Using R

Machine Learning Using R

Karthik Ramasubramanian, Abhishek Singh
Machine Learning with R Cookbook - Second Edition

Machine Learning with R Cookbook - Second Edition

AshishSingh Bhatia, Yu-Wei, Chiu (David Chiu)
Practical Machine Learning in R

Practical Machine Learning in R

Fred Nwanganga, Mike Chapple

Publisher Resources

ISBN: 9781838641771Supplemental Content