May 2019
Intermediate to advanced
664 pages
15h 41m
English
In this section, I'll discuss how I created the dataset used for this chapter and provide insight into the features and the class labels we'll endeavor to predict. The data is available on GitHub at https://github.com/PacktPublishing/Advanced-Machine-Learning-with-R/blob/master/Data/sim_df.csv:
> library(magrittr)> install.packages("glmnet")> install.packages("caret")> install.packages("classifierplots")> install.packages("DataExplorer")> install.packages("InformationValue")> install.packages("Metrics")> install.packages("ROCR")> install.packages("tidyverse")> options(scipen=999) > sim_df <- readr::read_csv('sim_df.csv')
The dataframe is 10,000 observations of 17 variables, consisting ...