Skip to Content
Advanced Machine Learning with R
book

Advanced Machine Learning with R

by Cory Lesmeister, Dr. Sunil Kumar Chinnamgari
May 2019
Intermediate to advanced
664 pages
15h 41m
English
Packt Publishing
Content preview from Advanced Machine Learning with R

K-means clustering

As we did with hierarchical clustering, we can also use NbClust() to determine the optimum number of clusters for k-means. All you need to do is specify kmeans as the method in the function. Let's also loosen up the maximum number of clusters to 15. I've abbreviated the following output to just the conclusion:

> numKMeans <- NbClust::NbClust(wine_df,    min.nc = 2,    max.nc = 15,    method = "kmeans")                   ***** Conclusion *****  * According to the majority rule, the best number of clusters is 3

Once again, three clusters appears to be the optimum solution.

In R, we can use the kmeans() function to do this analysis. In addition to the input data, we have to specify the number of clusters we are solving for and a value for random assignments, ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning Using R

Machine Learning Using R

Karthik Ramasubramanian, Abhishek Singh
Machine Learning with R Cookbook - Second Edition

Machine Learning with R Cookbook - Second Edition

AshishSingh Bhatia, Yu-Wei, Chiu (David Chiu)
Practical Machine Learning in R

Practical Machine Learning in R

Fred Nwanganga, Mike Chapple

Publisher Resources

ISBN: 9781838641771Supplemental Content