Skip to Content
Advanced Machine Learning with R
book

Advanced Machine Learning with R

by Cory Lesmeister, Dr. Sunil Kumar Chinnamgari
May 2019
Intermediate to advanced
664 pages
15h 41m
English
Packt Publishing
Content preview from Advanced Machine Learning with R

Rotation

Should you rotate or not? As stated previously, rotation helps in the interpretation of the principal components by modifying the loading of each variable, but makes the results technically no longer a principal component. The overall variation explained by the rotated number of components will not change, but the contributions to the total variance explained by each component will change. What you will find by rotation is that the loading values will either move farther or closer to zero, theoretically aiding in identifying those variables that are important to each principal component. This is an attempt to associate a variable to only one principal component. Remember that this is unsupervised learning, so you are trying to understand ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning Using R

Machine Learning Using R

Karthik Ramasubramanian, Abhishek Singh
Machine Learning with R Cookbook - Second Edition

Machine Learning with R Cookbook - Second Edition

AshishSingh Bhatia, Yu-Wei, Chiu (David Chiu)
Practical Machine Learning in R

Practical Machine Learning in R

Fred Nwanganga, Mike Chapple

Publisher Resources

ISBN: 9781838641771Supplemental Content