Skip to Content
Advanced Machine Learning with R
book

Advanced Machine Learning with R

by Cory Lesmeister, Dr. Sunil Kumar Chinnamgari
May 2019
Intermediate to advanced
664 pages
15h 41m
English
Packt Publishing
Content preview from Advanced Machine Learning with R

Model bias and variance

While several ML algorithms are available to build models, model selection can be done on the basis of the bias and variance errors that the models produce.

Bias error occurs when the model has a limited capability to learn the true signals from a dataset provided as input to it. Having a highly biased model essentially means the model is consistent but inaccurate on average.

Variance errors occur when the models are too sensitive to the training datasets with which they are trained. Having high variance in a model essentially means that the trained model will produce high accuracies on any test dataset on average, but their predictions are inconsistent.

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning Using R

Machine Learning Using R

Karthik Ramasubramanian, Abhishek Singh
Machine Learning with R Cookbook - Second Edition

Machine Learning with R Cookbook - Second Edition

AshishSingh Bhatia, Yu-Wei, Chiu (David Chiu)
Practical Machine Learning in R

Practical Machine Learning in R

Fred Nwanganga, Mike Chapple

Publisher Resources

ISBN: 9781838641771Supplemental Content