Skip to Content
Hands-On Unsupervised Learning with Python
book

Hands-On Unsupervised Learning with Python

by Giuseppe Bonaccorso
February 2019
Intermediate to advanced
386 pages
9h 54m
English
Packt Publishing
Content preview from Hands-On Unsupervised Learning with Python

K-means

K-means is the simplest implementation of the principle of maximum separation and maximum internal cohesion. Let's suppose we have a dataset X ∈ ℜM×N (that is, M N-dimensional samples) that we want to split into K clusters and a set of K centroids corresponding to the means of the samples assigned to each cluster Kj:

The set M and the centroids have an additional index (as a superscript) indicating the iterative step. Starting from an initial guess M(0), K-means tries to minimize an objective function called inertia (that is, the total average intra-cluster distance between samples assigned to a cluster Kj and its centroid μj):

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Unsupervised Learning Using Python

Hands-On Unsupervised Learning Using Python

Ankur A. Patel
Introduction to Machine Learning with Python

Introduction to Machine Learning with Python

Andreas C. Müller, Sarah Guido

Publisher Resources

ISBN: 9781789348279Supplemental Content