Skip to Content
Hands-On Unsupervised Learning with Python
book

Hands-On Unsupervised Learning with Python

by Giuseppe Bonaccorso
February 2019
Intermediate to advanced
386 pages
9h 54m
English
Packt Publishing
Content preview from Hands-On Unsupervised Learning with Python

Summary

In this chapter, we have discussed the properties of the probability density functions and how they can be employed to compute actual probabilities and relative likelihoods. We have seen how to create a histogram, which is the simplest method to represent the frequency of values after grouping them into predefined bins. As histograms have some important limitations (they are very discontinuous and it's difficult to find out the optimal bin size), we have introduced the concept of kernel density estimation, which is a slightly more sophisticated way to estimate a density using smooth functions.

We have analyzed the properties of the most common kernels (Gaussian, Epanechnikov, Exponential, and Uniform) and two empirical methods that ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Unsupervised Learning Using Python

Hands-On Unsupervised Learning Using Python

Ankur A. Patel
Introduction to Machine Learning with Python

Introduction to Machine Learning with Python

Andreas C. Müller, Sarah Guido

Publisher Resources

ISBN: 9781789348279Supplemental Content