Skip to Main Content
Hands-On Unsupervised Learning with Python
book

Hands-On Unsupervised Learning with Python

by Giuseppe Bonaccorso
February 2019
Intermediate to advanced content levelIntermediate to advanced
386 pages
9h 54m
English
Packt Publishing
Content preview from Hands-On Unsupervised Learning with Python

Connectivity constraints

An important feature of agglomerative hierarchical clustering is the possibility to include connectivity constraints to force the merging of specific samples. This kind of prior knowledge is very common in contexts where there are strong relationships between neighbors or when we know that some samples must belong to the same cluster because of their intrinsic properties. To achieve this goal, we need to use a connectivity matrix, A ∈ {0, 1}n × n:

In general, A is the adjacency matrix induced by a graph of the dataset; however, the only important requirement is the absence of isolated samples (without connections), ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Unsupervised Learning Using Python

Hands-On Unsupervised Learning Using Python

Ankur A. Patel
Introduction to Machine Learning with Python

Introduction to Machine Learning with Python

Andreas C. Müller, Sarah Guido

Publisher Resources

ISBN: 9781789348279Supplemental Content